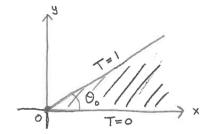
SNAP 2017. Laplace's equation and conformal maps.

Problem Set 2

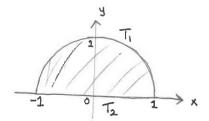
- 1. Let H(u,v) be a harmonic function (i.e. $H_{uu} + H_{vv} = 0$). Let f(z) = u(x,y)+iv(x,y) be a holomorphic function, where we are writing z=x+iy as usual. Show directly using the Chain rule and the Cauchy-Riemann equations that h(x,y) = H(u(x,y),v(x,y)) is a harmonic function of x and y where defined.
- 2. Fix an angle θ_0 with $0 < \theta_0 < \pi/2$ and consider the wedge shaped region as shown. Find the steady state heat distribution T(x,y) if the top edge is held at temperature T=1 and the bottom edge is held at temperature T=0.



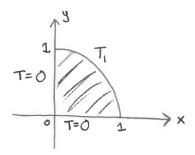
3. Find the steady state heat distribution T(x,y) on a half disk $\{x^2 + y^2 < 1, y > 0\}$ if the top semi-circular edge is held at a temperature T_1 and the bottom edge $\{(x,0) \mid -1 < x < 1\}$ is held at a temperature T_2 .

Show that the isotherms (curves with T = constant) are arcs of circles with center on the y-axis, and which pass through the points (-1,0) and (1,0).

Hint: consider the full disk with the lower semi-circle held at temperature T_3 with $T_2 = \frac{1}{2}(T_1 + T_3)$.

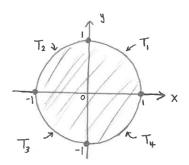


4. Find the steady state heat distribution T(x,y) on the quarter disk $\{x^2 + y^2 < 1, y > 0, x > 0\}$ if the quarter-circular edge is held at a temperature T_1 and the two straight edges along the x and y-axes are held at a temperature zero.

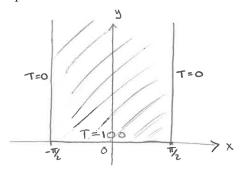


5. Find the steady state heat distribution T(x,y) on the unit disk $\{x^2+y^2<1\}$ if the quarter circles are held at constant temperatures T_1,T_2,T_3,T_4 as shown.

Hint: map to the upper half plane and consider solutions of the form $w\mapsto Arg(w-a)$.



6. Find the steady state heat distibution T(x,y) on the semi-infinite vertical slab $\{(x,y) \mid -\pi/2 < x < \pi/2, \ y > 0\}$, with the bottom edge held at temperature T=100 and the sides held at temperature zero.



7. Let V(x,y) be the potential function for the electric field for a conducting laminar plate corresponding to the lunar domain

$${x^2 + y^2 < 1} \cap {(x - 1/2)^2 + y^2 > 1/4}$$

with boundary values V=0 on the unit circle and V=1 on the smaller circle $(x-1/2)^2+y^2=1/4$. Solve for V(x,y) and show that the equipotential curve V(x,y)=c is a circle centered at (c/(1+c),0) with radius 1/(1+c).

Hint: map the domain to a horizontal strip with a Möbius transformation that sends 1 to ∞

